If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x+1.5=0
a = 2; b = 6; c = +1.5;
Δ = b2-4ac
Δ = 62-4·2·1.5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{6}}{2*2}=\frac{-6-2\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{6}}{2*2}=\frac{-6+2\sqrt{6}}{4} $
| 7w+40=4(w+4) | | 5(v+2)=-6v+21 | | 5x+54+4=7x+13 | | 10=-8v+6(v+3) | | -34=-6w+8(w-6) | | 9+3x=6(x-3) | | -7(x-+2)=-3(x-5) | | x^2-10x+25=124 | | n(n-1)/2=56 | | 6+5x=4x | | (2x+4)(-5x-1)=0 | | 7x+5=3x-12 | | 3n+2(1-4n)=2-n | | x+16=3xx= | | x+15=6xx= | | 3(x+4)=2(4x–1) | | (4x=5)x50 | | 4x=5-50 | | 5(w+4×103)=6×104 | | .5(w+4×103)=6×104 | | 6x+15=2x+17 | | 6(k–8)=78 | | p-3÷5=3 | | 4^3x=32 | | −5+13x=4(20x+36)+x | | −5+13x=4(20x+36)+ | | 3(2x+2)=4x+6 | | 2c+3c-4=5-4 | | 14+2+4x+8=90 | | -45(9x-20)-3x=45x-6 | | 2/3x+1/6=5/9 | | 2^(x+1)4^(x+1)8^(x+1)=128^x |